

29. The current passing through a conducting loop in the form of equilateral triangle of side $4\sqrt{3}$ cm is 2A. The magnetic field at its centroid is $\alpha \times 10^{-5}$ T. The value of α is _____.
(Given : $\mu_0 = 4\pi \times 10^{-7}$ SI units)

(1) $2\sqrt{3}$ (2) $\sqrt{3}$
(3) $3\sqrt{3}$ (4) $\frac{\sqrt{3}}{2}$

Ans. (3)

Sol.

$$B = \frac{\mu_0 \times I}{4\pi d} [\sin 60^\circ + \sin 60^\circ] \times 3$$

$$B = 10^{-7} \times \frac{2}{2 \times 10^{-2}} \left(\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \right) \times 3$$

$$= \sqrt{3} \times 10^{-5} \times 3 = 3\sqrt{3} \times 10^{-5}$$

30. A paratrooper jumps from an aeroplane and opens a parachute after 2 s of free fall and starts deaccelerating with 3 m/s^2 . At 10 m height from ground, while descending with the help of parachute, the speed of paratrooper is 5 m/s. The initial height of the aeroplane is _____.
(g = 10 m/s^2)

(1) 62.5 (2) 92.5
(3) 20 (4) 82.5

Ans. (2)

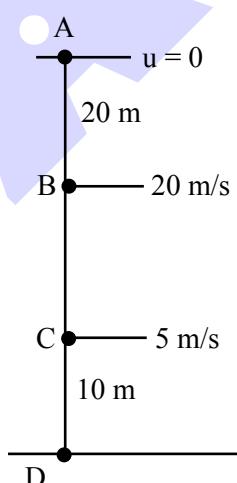
Sol. A to B

$$x_1 = \frac{1}{2} \times 10 \times 2^2 = 20 \text{ m}$$

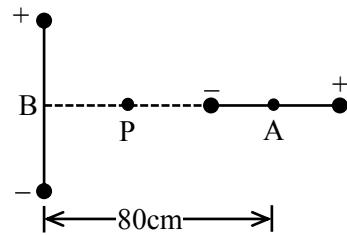
$$V = 0 + 10 \times 2$$

B to C

$$5^2 = 20^2 - 2(3)x_2$$

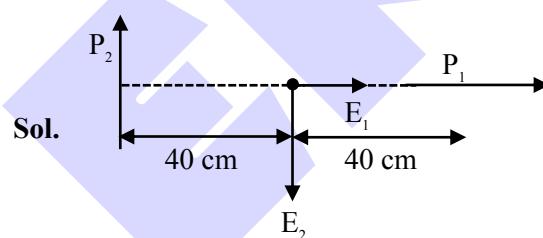

$$x_2 = \frac{375}{6}$$

$$x_2 = 62.5$$


C to D

$$x_3 = 10 \text{ m}$$

$$H = x_1 + x_2 + x_3 = 92.5$$



31. Two short dipoles (A, B), A having charges $\pm 2\mu\text{C}$ and length 1 cm and B having charges $\pm 4\mu\text{C}$ and length 1 cm are placed with their centres 80 cm apart as shown in the figure. The electric field at a point P, equi-distant from the centres of both dipoles is _____. N/C.

(1) $\frac{9}{16}\sqrt{2} \times 10^5$ (2) $4.5\sqrt{2} \times 10^4$
(3) $9\sqrt{2} \times 10^4$ (4) $\frac{9}{16}\sqrt{2} \times 10^4$

Ans. (4)

$$\vec{E}_2 = -\frac{KP_2}{r^3}; \vec{E}_1 = -\frac{2KP_1}{r^3}$$

$$P_1 = 2 \times 10^{-6} \times 10^{-2} = 2 \times 10^{-8}$$

$$P_2 = 4 \times 10^{-6} \times 10^{-2} = 4 \times 10^{-8}$$

$$\vec{E}_{\text{net}} = \frac{2 \times 9 \times 10^9 \times 2 \times 10^{-8}}{(0.4)^3} \hat{i} - \frac{9 \times 10^9 \times 4 \times 10^{-8}}{(0.4)^3} \hat{j}$$

$$\vec{E}_{\text{net}} = \frac{9 \times 10^9 \times 4 \times 10^{-8}}{(0.4)^3} [\hat{i} - \hat{j}]$$

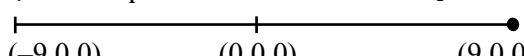
$$|\vec{E}_{\text{net}}| = \frac{9 \times 10^4}{16} (\sqrt{2})$$

32. Two charges $7\mu\text{C}$ and $-2\mu\text{C}$ are placed at $(-9, 0, 0)$ cm and $(9, 0, 0)$ cm respectively in an external field $E = \frac{A}{r^2} \hat{r}$, where $A = 9 \times 10^5 \text{ N/C.m}^2$.

Considering the potential at infinity is 0, the electrostatic energy of the configuration is _____. J.

(1) 1.4 (2) -90.7
(3) 49.3 (4) 24.3

Ans. (3)



Predict your JEE Main 1 2026 percentile

Try ALLEN's FREE Percentile Predictor

Check Now

Sol. $q_1 = 7\mu\text{C}$ r $q_2 = 2\mu\text{C}$

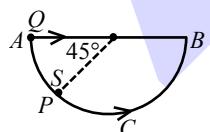
$$dV = -\vec{E} \cdot d\vec{r}$$

$$\int_0^r dV = - \int_{\infty}^r \frac{A}{r^2} dr$$

$$V = - \left[\frac{-A}{r^2} \right]_{\infty}^r \Rightarrow V = \frac{A}{r}$$

$$U = U_{\text{self}} + U_{\text{interaction}}$$

$$= q_1 v_1 = q_2 v_2 + \frac{k q_1 q_2}{2r}$$


$$= 7 \times 10^{-6} \frac{A}{9 \times 10^{-2}} - 2 \times 10^{-6} \frac{A}{9 \times 10^{-2}} \\ - \frac{9 \times 10^9 \times 14 \times 10^{-12}}{2 \times 9 \times 10^{-2}}$$

$$= \frac{5 \times 10^{-6} \times 9 \times 10^5}{9 \times 10^{-2}} - 7 \times 10^{-1}$$

$$= 50 - 0.7$$

$$= 49.3 \text{ J}$$

33. A bead P sliding on a frictionless semi-circular string (ACB) and it is at point S at $t = 0$ and at this instant the horizontal component of its velocity is v . Another bead Q of the same mass as P is ejected from point A at $t = 0$ along the horizontal string AB , with the speed v , friction between the beads and the respective strings may be neglected in both cases. Let t_p and t_Q be the respective times taken by beads P and Q to reach the point B , then the relation between t_p and t_Q is

- (1) $t_p > t_Q$
- (2) $t_p < t_Q$
- (3) $t_p > 1.25 t_Q$
- (4) $t_p = t_Q$

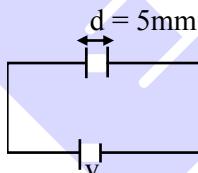
Ans. (2)

Sol. Horizontal displacement of Q is more than P .
 $X_Q > X_p$

Horizontal component of velocity is same

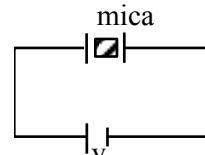
$$\text{So } t_p = \frac{X_p}{v}$$

$$t_Q = \frac{X_Q}{v}$$

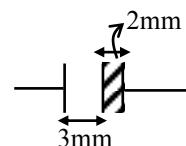

$$t_Q > t_p$$

34. A parallel plate capacitor with plate separation 5 mm is charged by a battery. On introducing a mica sheet of 2 mm and maintaining the connections of the plates with the terminals of the battery, it is found that it draws 25% more charge from the battery. The dielectric constant of mica is ____.

- (1) 2.5
- (2) 2.0
- (3) 1.5
- (4) 1.0


Ans. (2)

Sol.


$$C = \frac{\epsilon_0 A}{d}$$

$$Q_1 = CV$$

$$Q_2 = (C_{eq})V$$

$$Q_2 = 1.25 CV$$

$$C_{eq} = \frac{C_1 C_2}{C_1 + C_2} = \frac{\frac{\epsilon_0 A}{3} \times \frac{K \epsilon_0 A}{2}}{\frac{\epsilon_0 A}{3} + \frac{K \epsilon_0 A}{2}}$$

Predict your JEE Main 1 2026 percentile

Try ALLEN's FREE Percentile Predictor

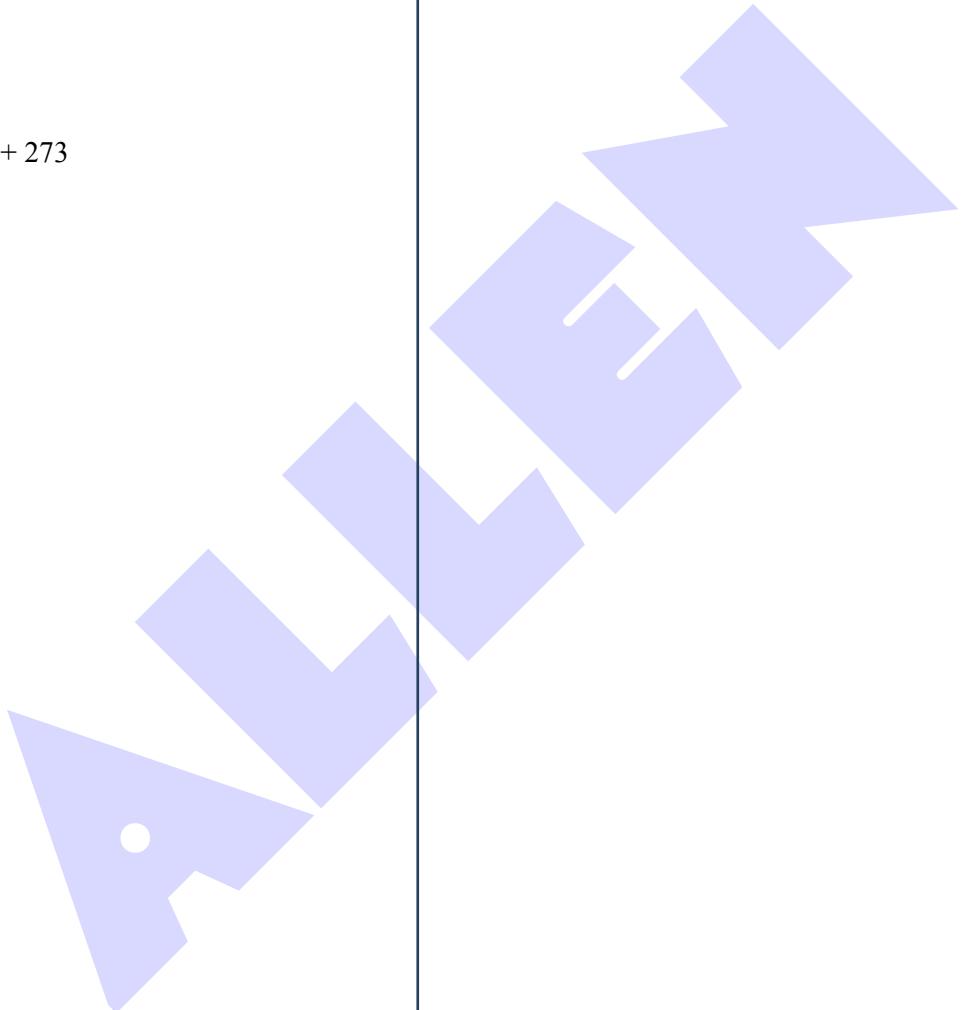
Check Now

50. The velocity of sound in air is doubled when the temperature is raised from 0°C to $\alpha^{\circ}\text{C}$. The value of α is _____.

Ans. (819)

Sol. $V = \sqrt{\frac{\gamma RT}{M}}$

$$\frac{V_1}{V_2} = \frac{\sqrt{T_1}}{\sqrt{T_2}}$$


$$\frac{V_0}{2V_0} = \sqrt{\frac{273}{T_2}}$$

$$\frac{1}{4} = \frac{273}{T_2}$$

$$T_2 = 4 \times 273 = \alpha + 273$$

$$\alpha = 3 \times 273$$

$$\alpha = 819^{\circ}\text{C}$$

Predict your JEE Main 1 2026 percentile

Try

ALLEN's **FREE** Percentile Predictor

Check Now

ALLEN

For Class 12th Pass Students

**RISE. REPEAT.
RANK UP IN JEE**

JOIN LEADER COURSE

JEE (Main+Adv.) 2027

26th Mar & 15th Apr

Know more

AIR 1
JEE (Adv.) 2025
Rajit Gupta
CLASSROOM

ALLEN ONLINE

**Think JEE 2027
will be your **best shot?****

Join the **Leader Online Course!**

Win up to

90% scholarship

via **ASAT**

Enrol Now

Get REAL exam practice
for **JEE Main 2026**

with the

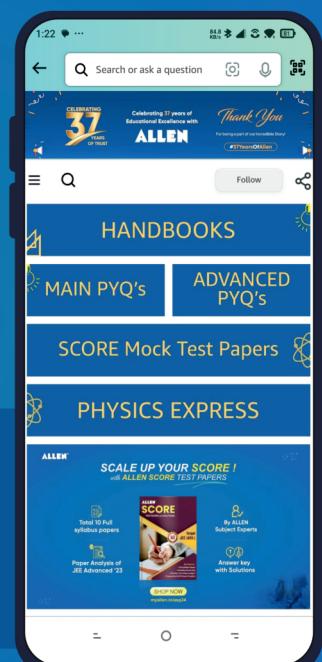
Major Online Test Series!

13 full-syllabus tests

100+ additional mock tests

50,000+ teacher-
recommended Qs. & more

Buy Now


ALLEN

Get The Latest
IIT-JEE Special Books
at Your Door Steps...!!

JOIN THE JOURNEY OF LEARNING

with

HANDBOOKS | ADVANCED-QB | SCORE PAPERS
PHYSICS EXPRESS | MAIN PYQ's | Adv. PYQ's

SHOP NOW

Available in
HINDI & ENGLISH